CT-based quantitative SPECT for the radionuclide 201Tl: experimental validation and a standardized uptake value for brain tumour patients
نویسندگان
چکیده
We have previously reported on a method for reconstructing quantitative data from 99mTc single photon emission computed tomography (SPECT) images based on corrections derived from X-ray computed tomography, producing accurate results in both experimental and clinical studies. This has been extended for use with the radionuclide ²⁰¹Tl. Accuracy was evaluated with experimental phantom studies, including corrections for partial volume effects where necessary. The quantitative technique was used to derive standardized uptake values (SUVs) for ²⁰¹Tl evaluation of brain tumours. A preliminary study was performed on 26 patients using ²⁰¹Tl SPECT scans to assess residual tumor after surgery and then to monitor response to treatment, with a follow-up time of 18 months. Measures of SUVmax were made following quantitative processing of the data and using a threshold grown volume of interest around the tumour. Phantom studies resulted in the calculation of concentration values consistently within 4% of true values. No continuous relation was found between SUVmax (post-resection) and patient survival. Choosing an SUVmax cut-off of 1.5 demonstrated a difference in survival between the 2 groups of patients after surgery. Patients with an SUVmax<1.5 had a 70% survival rate over the first 10 months, compared with a 47% survival rate for those with SUVmax>1.5. This difference did not achieve significance, most likely due to the small study numbers. By 18 months follow-up this difference had reduced, with corresponding survival rates of 40% and 27%, respectively. Although this study involves only a small cohort, it has succeeded in demonstrating the possibility of an SUV measure for SPECT to help monitor response to treatment of brain tumours and predict survival.
منابع مشابه
Utility of 123I-MIBG Standardized Uptake Value in Patients with Refractory Pheochromocytoma and Paraganglioma
Objective(s): Single-photon emission computed tomography (SPECT) using metaiodobenzylguanidine (MIBG) is an important diagnostic tool for the treatment of refractory pheochromocytoma and paraganglioma (PPGL). Owing to the difficulty of SPECT quantification, the tumour-to-background ratio (TBR) is used to assess disease activity. However, the utility of TBR is limited o...
متن کاملThe comparison of serial SPECT-CT imaging to estimate absorbed dose to the organ at risk from peptide receptor radionuclide therapy dosimetry
Introduction: In Peptide Receptor Radionuclide Therapy (PRRT), the administration of radionuclide such as Lu-177 label with a pharmaceutical agent useful to destroy the lesion. The amount of Lu-177 radioactivity administered to the patients is still not standardize and generally not more than 7.4 GBq per session due to the patient’s safety issues. The first cycle of Lu-177 is a...
متن کاملEvaluation of malignancy in ring enhancing brain lesions on CT by thallium-201 SPECT.
OBJECTIVE To investigate patients with cystic enhancing lesions on CT and to determine whether thallium-201 (201Tl) SPECT adds to further preoperative information in differential diagnosis between gliomas and abscesses. METHODS Twenty one patients with cystic ring enhancing CT findings were studied and uptake indices were compared with CT enhancement volumes, histopathology, and survival time...
متن کاملThallium-201 brain SPECT of lymphoma in AIDS patients: pitfalls and technique optimization.
PURPOSE Our aim was to examine the 201Tl-SPECT scans in AIDS patients with focal CNS lesions to identify those studies with a false-positive or false-negative result to determine any potential pitfalls in interpretation as well as to suggest methods for technique optimization. METHODS We retrospectively reviewed the charts of 162 AIDS patients with cerebral mass lesions on 201Tl-SPECT studies...
متن کاملComparison of brain SPECT with 99mTc-MIBI and CT-scan in discriminating of radiation necrosis and brain tumor recurrence [Persian]
Introduction: 99mTc-MIBI has been proposed for use as an imaging agent for various tumors, including breast cancer, lung cancer, lymphomas, melanomas and brain neoplastic lesions. Brain tumors are very common and radiotherapy being major part of treatment following surgery. After radiotherapy, deteriorating clinical status can be due to either radiation necrosis or recurrent tumor. Comput...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2012